Expanding and forwarding parameters of product graphs
نویسندگان
چکیده
Expanding and forwarding are two graphic parameters related to the connectivity and the capacity of the network—the undirected graph with a given routing. Many large networks are composed from some existing smaller networks by using, in terms of graph theory, Cartesian product. The expanding and forwarding parameters of such large networks are associated strongly with that of the corresponding smaller ones. This association also provides a convenient way to determine the two parameters for some known networks such as the hypercube, generalized cube and the mesh, etc. As the generalization of the forwarding index, t-forwarding index is introduced and studied. The study shows that the t-forwarding parameters of a given graph are convergent (refers to the limit t → ∞), which reveals some further properties concerning the forwarding parameters of the product graphs. ? 2003 Elsevier B.V. All rights reserved. MSC: 05C90
منابع مشابه
Expanding and Forwarding
Expanding parameters of graphs (magnification constant, edge and vertex cutset expansion) are related by very simple inequalities to forwarding parameters (edge and vertex forwarding indices). This shows that certain graphs have eccentricity close to the diameter. Connections between the forwarding indices and algebraic parameters like the smallest eigenvalue of the Laplacian or the genus of th...
متن کاملOn global (strong) defensive alliances in some product graphs
A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one moreneighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global ...
متن کاملGraph product of generalized Cayley graphs over polygroups
In this paper, we introduce a suitable generalization of Cayley graphs that is defined over polygroups (GCP-graph) and give some examples and properties. Then, we mention a generalization of NEPS that contains some known graph operations and apply to GCP-graphs. Finally, we prove that the product of GCP-graphs is again a GCP-graph.
متن کاملOn Tensor Product of Graphs, Girth and Triangles
The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.
متن کاملProduct of normal edge-transitive Cayley graphs
For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 136 شماره
صفحات -
تاریخ انتشار 2004